domingo, 9 de agosto de 2020



ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]



Em mecânica quântica, o teorema de Landau–Yang,[original 1] [original 2] é uma regra de seleção para partículas que decaem em dois fótons.


Teorema[editar | editar código-fonte]

Resultado principal[editar | editar código-fonte]

Uma partícula massiva de spin 1 não pode decair para dois fótons.

Hipóteses[editar | editar código-fonte]

Fótons aqui representam qualquer partícula de spin 1, sem massa e sem graus de liberdade internos. Contudo, o fóton é a única partícula que se conhece com essas propriedades.

Consequências[editar | editar código-fonte]

O teorema tem várias consequências em física de partículas, por exemplo
  • méson ρ não decai para dois fótons, diferente do píon neutro, que quase sempre decai nesse estado final (98,8% das vezes).[1]
  • bóson Z não decai para dois fótons. O termo clássico não existe na lagrangeana devido à invariância de gauge, mas o teorema garante que a matriz S do decaimento é zero mesmo considerando loops quânticos.
  • bóson de Higgs, cujo spin nunca fora medido, mas cujo decaimento para dois fótons foi observado recentemente,[2] [3] não pode ter spin 1.

Demonstração[editar | editar código-fonte]

Considere o referencial em que a partícula instável está parada e que os fótons decaem na direção . Nessa configuração, o momento angular orbital dos produtos de decaimento terá sempre projeção do momento angular orbital . Esse resultado é imediato já que  e o momento dos fótons está na direção .
A projeção do momento angular de spin do sistema de dois fótons tem dois valores possíveis. Ela pode ser  (em unidades de , o que será sempre assumido daqui para frente) ou . Como a parte orbital não pode contribuir com momento angular nessa direção, é impossível usar as combinações com  para formar um estado inicial com . As combinações com projeção zero são convenientemente escolhidas como simétricas ou anti-simétricas por troca de partículas:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O estado anti-simétrico por troca dos dois fótons idênticos exige, pelo teorema de spin-estatística, que a função de onda orbital seja também anti-simétrica e, logo, com momento angular ímpar. Como a helicidade apenas diz como o sistema se transforma por rotações em torno do eixo , não é possível identificar o estado final com um único spin. Contudo, devido ao comportamento por rotações em torno do eixo  e por ser anti-simétrico por troca de partículas, sabe-se que o estado é exclusivamente decomposto naqueles com  ímpar e .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Para formar um estado inicial com , precisa-se então combinar cada estado acima com o momento angular orbital tal que . Contudo, é impossível esse usar esses estados já que o coeficiente de Clebsch–Gordan[4] para:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é nulo para qualquer  e eles não contribuem para um estado com . Na verdade, esse resultado é válido para qualquer  ímpar e pode-se tornar o teorema um pouco mais forte: o decaimento para dois fótons de uma partícula com spin ímpar e com auto-valor  por paridade, através de uma interação que preserve paridade, é sempre impossível.
A igualdade acima pode ser imediatamente verificada usando a propriedade de simetria dos coeficientes de Clebsch–Gordan[5]:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O estado simétrico também não identificável com uma única representação massiva. Contudo, devido ao seu comportamento por troca de partículas e por rotações em torno do eixo , ele só pode ser decomposto em representações com  par e  o que, pelo teorema de spin-estatística, implica que o momento angular orbital tem que ser par, limitando-o então ao caso . Igual ao caso acima, isso implica que o coeficiente de Clebsch–Gordan é zero. Entretanto, diferente do caso acima, para spins maiores 2, pode-se usar as componentes com projeção  e não há uma regra de seleção adicional em decaimentos que preservem paridade.
Para campos com graus de liberdade internos, como glúons, pode-se ter, por exemplo,  e a função de onda de cor também anti-simétrica (por exemplo, nas representações ), contornando a demonstração do teorema. No decaimento para campos massivos, a projeção com , para a qual o coeficiente de Clebsch–Gordan não é nulo, é possível e novamente se contorna a demonstração do teorema.

Demonstração alternativa[editar | editar código-fonte]

Uma demonstração alternativa, que não faz tanto uso direto da álgebra de momento angular na mecânica quântica, é dada pela construção explícita da amplitude invariante. No gauge de Coulomb, a amplitude invariante deve ser um escalar rotacional construído com os vetores  (momento dos fótons, vetor de spin da partícula instável e polarizações dos fótons). Tanto os vetores de spin quanto as polarizações são normalizados  e, pela condição de gauge, . Além disso, amplitude deve ser linear em cada um dos . Só há três combinações que satisfazem essas condições:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde o primeiro termo é par por paridade e os dois últimos ímpares. Contudo, os três termos acima são anti-simétricos por troca  e , violando o teorema de spin-estatística. No caso em que momento angular é conservado, mas a estatística de Bose não é obedecida, os três termos acima são possíveis e usados em procura por violações dessa estatística.[6]




teorema de Ehrenfest, nomeado a partir de Paul Ehrenfest, físico e matemático austríaco, relaciona a derivada do tempo do valor esperado para um operador na mecânica quântica para o comutador deste operador com o hamiltoniano do sistema. Isto é:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde A é algum operador da mecânica quântica e  é seu valor esperado.
O Teorema de Ehrenfest é obviamente a Representação de Heisenberg da mecânica quântica, onde isto é apenas o valor esperado do momento da Equação de Heisenberg.
O teorema também é altamente relacionado com o Teorema de Liouville da mecânica hamiltoniana, que envolve os Parênteses de Poisson ao invés do comutador.

Derivação[editar | editar código-fonte]

Suponha que o sistema seja apresentado em um estado quântico . Se nós quisermos saber a derivada do tempo instantânea do valor esperado de A, que é, por definição:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



onde nós temos integrando por todo espaço. Se nós aplicarmos a Equação de Schrödinger, encontraremos isto:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e isto:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Perceba que  porque o Hamiltoniano é um operador autoadjunto. Colocando isto na equação acima nós obteremos:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Diversas vezes (mas não sempre) o operador A é independente do tempo, então sua derivada será zero e nós poderemos ignorar o último termo da equação.

Exemplo geral[editar | editar código-fonte]

Pelo exemplo mais geral possível de uma partícula de grande massa se movendo em um vetor potencial, o Hamiltoniano é simplesmente:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é simplesmente a localização da partícula. Suponha que nós quiséssemos saber a mudança instantânea do momento . Utilizando o teorema de Ehrenfest, teremos:
já que o operador  comuta com ele mesmo e não obtém dependência com o tempo. Expandindo o lado direito da equação, substituindo p por , nós obteremos:
Após adicionar a regra do produto ao segundo termo, teremos:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


mas nós reconheceremos isto como a segunda lei de Newton.
Similarmente nós poderemos obter a mudança de posição instantânea do valor esperado.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Este resultado é novamente em acordo com a equação clássica.





Na Representação de Heisenberg da mecânica quântica o estado quântico, não se modifica com o tempo, e um observador A satisfaz a equação

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde H é o hamiltoniano e [·,·] é o comutador de A e H. Em certo sentido, a Representação de Heisenberg é mais natural e fundamental que a Representação de Schrödinger, especialmente para a teoria da relatividade geral e restrita.
A similaridade da Representação de Heisenberg com a física clássica é facilmente identificada ao trocar o comutador da equação acima pelos Parênteses de Poisson, então a equação de Heisenberg se tornará uma equação da mecânica hamiltoniana.